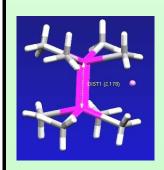
Organometallic Chemistry and Homogeneous Catalysis



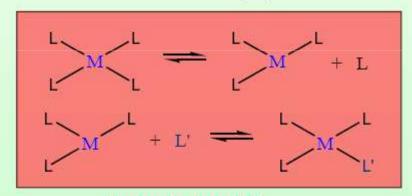
Dr. Alexey Zazybin
Lecture N7
Kashiwa Campus, December 4, 2009

Types of reactions in the coordination sphere of TMC

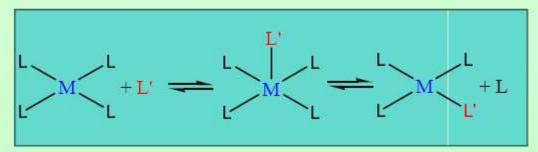
6 main types of reactions with TMC:

- 1. Ligand substitutions
 - 2. Oxidative addition
 - 3. Reductive elimination
 - 4. Insertion
 - 5. Elimination
- 6. Nucleophilic attack on ligand

1. Ligand substitutions



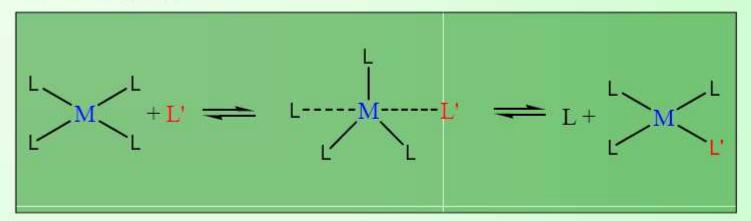
A substitution reaction is one in which an existing ligand on a metal center is replaced by another ligand:


$$ML_n + L' \longrightarrow ML_{n-1}L' + L$$

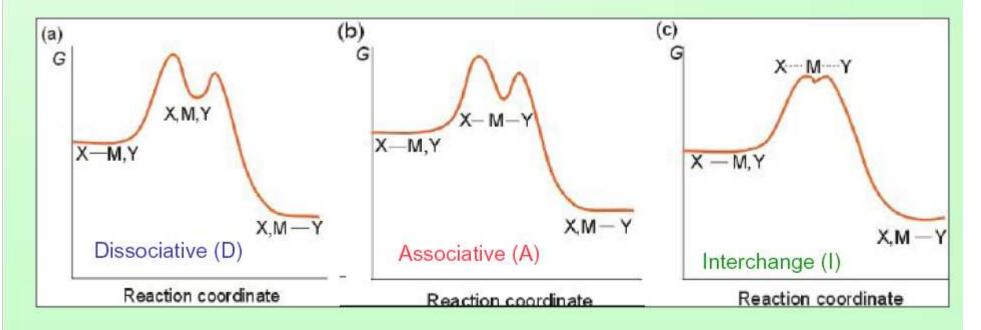
Organic chemistry looks at substitution reactions in terms of S_N1 and S_N2 mechanisms. In organometallic chemistry we have 3 possible mechanisms:

Dissociative (D)

Associative (A)



Dissociative – get intermediate of reduced coordination number, which lives long enough to equilibrate with its surroundings before entry of X. Analogous to S_N1.


Associative – get intermediate of increased coordination number, which lives long enough to equilibrate with its surroundings before loss of L. No analogue in organic chemistry.

Interchange (I)

Interchange – both the entering and leaving groups are simultaneously bound to the metal ion. No discrete intermediate. Analogous to S_N2 .

Reaction Mechanisms

- Rate determining step
 - Associative depends strongly on incoming group
 - **Variation of rate on different ligand groups**
 - * Formation of halides complexes with different rates for different halides
 - Dissociative is independent of ligand group
 - Replacement of water by ligand
 - * Ammonia and pyridine found to have similar rates
 - * Rate dependent on bond breaking of ligand on complex
 - Interchange mechanism
 - Associatively active if rate is dependent on new bond formation
 - Dissociatively active if rate dependent on bond breaking in complex

Rate Determining Step

- also denoted associative or dissociative
- associative (lowercase a)
 - the rate depends heavily on the entering group

$$[PtCl(dien)]^{+} + I^{-} \longrightarrow [Ptl(dien)]^{+} + Cl^{-}$$
$$[PtCl(dien)]^{+} + Br^{-} \longrightarrow [PtBr(dien)]^{+} + Cl^{-}$$

- dissociative (lowercase d)
 - the rate is independent of the entering group

$$[Ni(OH_2)_6]^{2+} + NH_3 \longrightarrow [Ni(OH_2)_5(NH_3)]^{2+} + H_2O$$

What mechanism you can suppose for the reaction:

$$Ni(CO)_4 + {}^{13}CO \longrightarrow Ni(CO)_3({}^{13}CO) + CO$$

Ni(CO)₄ – 18e⁻ complex (saturated), no free d-orbitals for the coordination, so only dissociative mechanism is possible:

$$Ni(CO)_4$$
 \longrightarrow $Ni(CO)_3 + CO$
 $Ni(CO)_3 + {}^{13}CO$ \longrightarrow $Ni(CO)_3({}^{13}CO)$

Do 18 electron complexes undergo ligand substitution by an associative mechanism?

Yes, but usually only when a poly-hapto ligand can adopt a lower hapticity coordination. This is necessary to avoid a 20 e- intermediate.

Factors influencing ease of dissociation:

- 1e row < 2e row > 3e row
- d^8 -ML₅ > d^{10} -ML₄ > d^6 -ML₆
- stable ligands (CO, olefins, Cl⁻) dissociate easily (as opposed to e.g. CH₃, Cp).

The completeness of substitution depends on:

- formation bond strength
- excess of ligand (usually 2 - 10)

The rate of substitution depends on:

- breaking bond strength

For O-donor ligand the strength of M-L bond:

Increases in a <u>period</u> from the left to the right, Decreases in a <u>group</u> from the top to the bottom

For P- and C-donor ligand the strength of M-L bond:

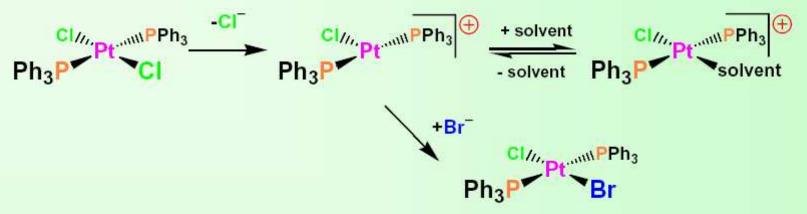
Increases in a <u>period</u> from the left to the right, Increases in a <u>group</u> from the top to the bottom

Factors influence association and dissociation of ligands

Steric Factors

Bulky ligands occupy more space around a metal center and can block incoming ligands trying to access vacant coordination sites on a metal

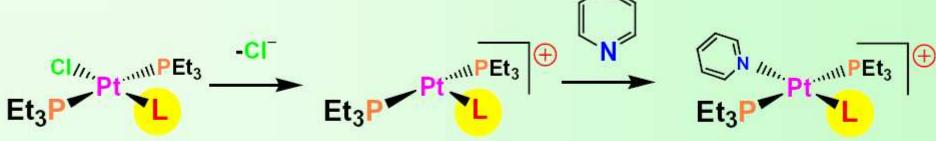
$$Ni(PR3)4$$
 K_D $Ni(PR3)3 + PR3$


Ligand:	P(OEt) ₃	P(O-p-tolyl) ₃	P(O-i-Pr) ₃	P(O-o-tolyl) ₃	PPh ₃
Cone angle:	109°	128°	130°	141°	145°
K _D :	< 10-10	6 x 10 ⁻¹⁰	2.7 x 10 ⁻⁵	4 x 10-2	> 1000

Solvent Effects

The coordinating ability of the solvent can often affect reactions. The presence of lone pairs and electron-rich donor atoms on the solvent usually makes it a better ligand:

The solvent is usually weakly coordinated and readily dissociates to constantly produce coordination vacancy:


Sometimes it is important to proceed reaction in non-coordinative solvent. In such a case hexane or benzene is used; when more polar reaction media should be taken – CH₂Cl₂ or chlorobenzene could be used.

Trans Effect

The *trans effect* concerns the electronic effect of one ligand on another ligand when they are *trans* to one another. The classical *trans* effect involves two s-donating ligands *trans* to one another. The stronger s-donor ligand preferentially weakens the bond of the weaker s-donor ligand *trans* to it, making it easier to dissociate and do a ligand substitution reaction.

Relative rate of substitution based on trans ligand L:

$$CI^- = 1$$
, $Ph^- = 100$, $CH_3^- = 10^3$, $H^- = 10^4$

Cis-effect:

Relative rate of substitution based on cis ligand L:

$$CI^- = 1$$
, $Ph^- = 2$, $CH_3^- = 4$, $H^- = 4$

2. Oxidative addition

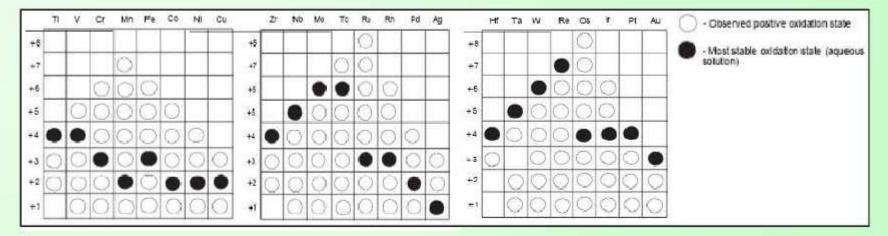
11

Main features of the oxidative addition:

- 1) Increasing of the oxidative state of TM
- Increasing of the coordination number of TM (increasing of the number of ligands in the coordination sphere of TM)

$$M^{n} \rightarrow M^{n+2}: \qquad M_{n} + X-Y \rightarrow X-ML_{n}-Y$$

$$Mg + C_{2}H_{5}CI \longrightarrow C_{2}H_{5}-Mg-CI$$


$$UV-hv \longrightarrow M_{n}-C_{5}H_{11}-H$$

$$Me_{3}P \longrightarrow M^{n+1}: \qquad 2ML_{n} + X-Y \rightarrow ML_{n}-X + ML_{n}-Y$$

$$(CO)_{5}Mn-Mn(CO)_{5} + Br-Br \longrightarrow 2 Br-Mn(CO)_{5}$$

Metal Complex: electron rich metals in low oxidation states, with strong donor ligands and a site of coordinative unsaturation.

Requirements for TMC to participate in the oxidative addition:

- Metal complex should be unsaturated (should have unoccupied orbital)
- 2) Atom of TM should have at least 1 pair of electrons. Disposition of both unoccupied orbital and pair of electrons should be favorable for the formation of new bonds
- 3) Low oxidation state (0, +1, +2) of TM favors oxidative addition

The transferring of the two electrons from the metal to the incoming ligand breaks a bond in that ligand forming two new anionic ligands:

two new anionic hydride ligands

Substrates: two groups segregated into non-polar and polar. Currently, the most facile way to form C-M σ -bonds is with polar substrates (*e.g.* alkyl, aryl, and vinyl halides).

Non-polar substrates: R-H

$$H_2$$
, R_3 Si-H, R_2 B-H, R CH $_2$ -H, R —H ,—H ,—H R

Other non-polar substrates: S-S bonds, C-C bonds

Polar substrates: R-X where X = I, Br, Cl, OTf

$$-OTf = F_3C - S - O$$

H-X, RCH₂-X,
$$\longrightarrow_X$$
 $\stackrel{X}{\longrightarrow}_X$

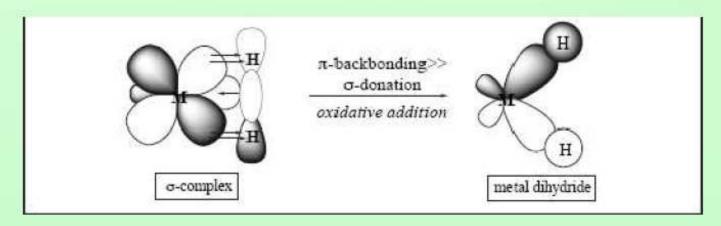
General OA Mechanisms:

1. Concerted (generally for non-polar substrates)

$$L_xM^n + \int_B^A - \left[L_xM^n \right]_B^{\ddagger} - \left[L_xM^{(n+2)} \right]_B^A$$
3-centered TS cis addition

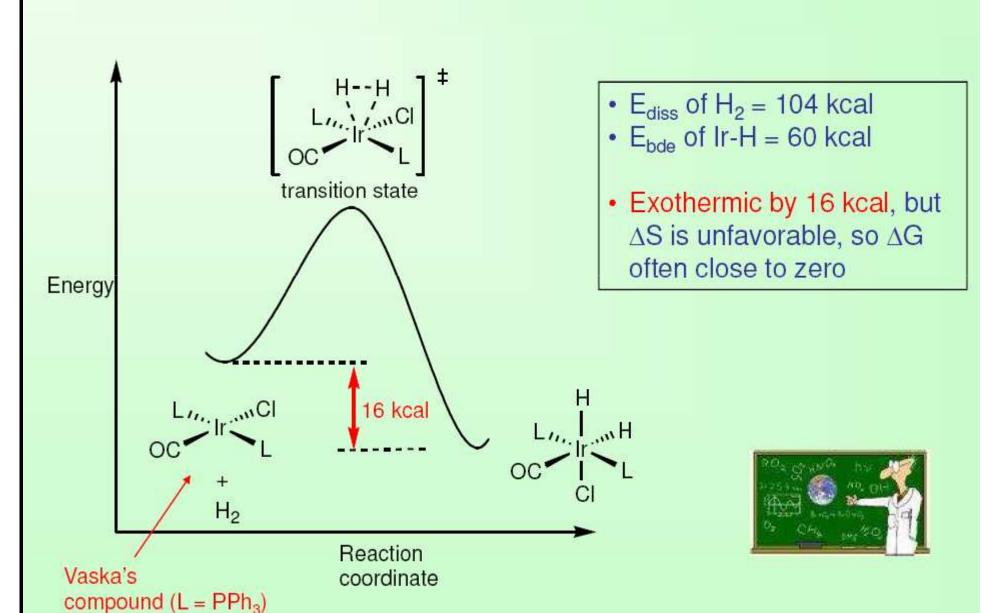
2. Nucleophilic displacement (generally for polar substrates)

$$L_{x}M^{n} + \frac{\Lambda}{X} - \left[L_{x}M^{n} - \Lambda \cdots X \right]^{\frac{\delta^{-}}{4}} \left[L_{x}M^{(n+2)} - \Lambda \right]^{+} + X^{-}$$

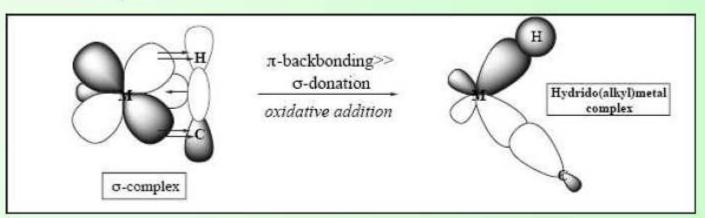

3. Radical (both non-polar and polar)

$$L_xM^n + \int_C^A - L_xM^{(n+1)} A \quad C \cdot \int_C^A L_xM^{(n+2)} C$$

Concerted mechanism - usually through the σ-complex formation



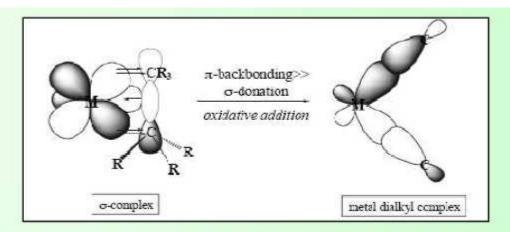
 σ -complex formation precedes an early (little σ -bond breaking), 3-centered transition state where strong π -backbonding results in oxidative addition of the bound substrate to the metal. The concerted mechanism is thought to operate primarily for non-polar substrates (*i.e.* H-H,C-H, Si-H, B-H) with electron rich, low valent metals. The spectroscopic identification of metal dihydrogen σ -complexes with H-H bond distances stretched between the non-bonding (0.74Å) and dihydride extremes (>1.6Å) provides strong support for this mechanism with H₂.



Three-centre OA; Vaska's compound

sp³ C-H OA via σ complex intermediates

regioselectivity: sp^2 C-H > 1^o sp^3 C-H > 2^o sp^3 C-H >>> 3^o sp^3 C-H. There is both a kinetic and thermodynamic preference to form the least sterically hindered C-M σ -bond. Kinetic preference: activation barrier to σ -complex formation is lower for less sterically hindered C-H bonds and bonds with more s character. Thermodynamic preference: stronger C-M bonds are formed


sp3 C-H: concerted vs. radical

crossover experiment: evidence in support of a concerted mechanism:

Less than 7% of the crossover products were observed by ¹H NMR. This may be indicative of a minor radical pathway.

OA: sp3 C-sp3 C

Even though bond dissociation energies of C-C bonds are lower than those of analogous C-H bonds (e.g. C_6H_5 -CH $_3$:100 kcal/mol vs. C_6H_5 -H: 110 kcal/mol), transition metal mediated OA's into C-C bonds are much more rare than those for analogous C-H bonds. Formation of the σ -complex is kinetically disfavored by steric repulsion between the metal complex and the carbon substituents and by the high directionality of the sp 3 C-sp 3 C bond that localizes the σ -bonding orbital deep between the carbon nuclei. Milstein and coworkers are able to overcome the kinetic barrier by approximating the C-C bond at the metal center.

MECHANISMS FOR OXIDATIVE ADDITION - AN OVERVIEW

Ox. Addn. Mechanism	Type of L _z M	Type of X-Y	Features
(3-centre addition)	(1) coord. Unsat., (2) sterically uncongested, (3) 3 rd > 2 ^{ud} >> 1 st row TM, (4) filled orbital capable of interacting with the σ* orbital of incoming X-Y → Often d ⁸ complexes [e.g. IrCl(CO)(PR ₃) ₂].	Fairly non-polar substrates: H-H, R ₃ C-H, R ₃ Si-H strained R ₃ C-CR ₃ , Ar-X not very common	 (1) cis-addition (2) retention of config. at RR R C-Y (3) 2nd order, ΔS¹ ~ -30 e.u., rate not greatly affected by solvent polarity.
Nucleophilic (S _N 2)	Nucleophilic metals e.g. IrCl(CO)(PR ₃) ₂ , Ni(PR ₃) ₄ , Pd(PR ₃) _n	Polarized substrates: R_3C-X ($1^0 > 2^0 > 3^0$) (MeI > EtI > ⁱ PrI), Also Cl_2 , Br_2 , I_2	 (1) ett- or trans-addition (2) inversion of config. at RR'R"C-Y (3) 2nd order, ΔS[‡] ~ -40 to -50 e.u., rate accelerated in polar solvents.
Radical (chain or non-chain mechanisms)	Non-chain = Ni(PPh ₃) ₃ , Pt(PPh ₃) ₃ Chain = IrCl(CO)(PMe ₃) ₂ Binuclear = Mn ₂ (CO) ₅ , Co(CN) ₅ ³	R ₃ C-X, R ₃ Sn-X (3° > 2° > 1°)	(1) cis- or trans-addition (2) recenization of RR R C-Y (3) only the radical chain mechanism is accelerated by radical initiators and retarded by radical inhibitors
Ionic (H or X attacks first)	(a) 18 e Pt(PPh ₃) ₄ + H Cl (H attacks first) (a) 16 e Ir(COD)(PR ₃) ₂ + H Cl (Cl attacks first)	H-X (largely dissociated in solution)	

In general: Non polar substrates (e.g. H-H, C-H, Si-H) → Concerted Halogens (Cl₂, Br₂, I₂) → Nucleophilic

Alkyl halides \rightarrow Nucleophilic (S_N2) or Radical Acids (HCl, HBr, HI) \rightarrow Ionic